If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(16x^2-4x-1)/(2x+1)=0
Domain of the equation: (2x+1)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
2x!=-1
x!=-1/2
x!=-1/2
x∈R
(16x^2-4x-1)=0
We get rid of parentheses
16x^2-4x-1=0
a = 16; b = -4; c = -1;
Δ = b2-4ac
Δ = -42-4·16·(-1)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{5}}{2*16}=\frac{4-4\sqrt{5}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{5}}{2*16}=\frac{4+4\sqrt{5}}{32} $
| 2x/3-x/5=6(x-2)/ | | -32=8/7x | | 3(9-x)-(x+2)=5+6(x-5) | | x5-2x2-x3-2x2-20+24=0 | | 10y-5(1+y)=3(2y-2)–20 | | 190=n | | 13+n=9 | | 5x−3=x+7+3x | | 18,7+x+2x/3+2,3=50 | | 210=n | | 4(x+3)+9-5=32 | | 4/x=(14/350.80/120)=0 | | -4/5x-4/30=-2/3x+2/18 | | 6(x-5)+3x-3=3(×-9)+12× | | (y+4)/7=3 | | 4/x=(14/350.80/120) | | Y^2=-2x+4 | | X^3+9x^2+24x+10=0 | | 4/x=14/350*80/120 | | 4/x=14/350.80/120 | | 5x+13=-2(x+40 | | 5p+7+9p=−21 | | 3(2x-14)=-12 | | 6x+3=8+2x | | 1/5x+2=3/4x-7 | | 7v-8/5=3v-4/4(+2) | | 3=11z | | (1/6)=((5x-1)/(2))=(2/3) | | 96x-69×=243 | | r=3/2(3.14) | | 13×=80-y | | 9(3x-5)=20x-17 |